
JEAN-LOUIS BRIAUD

GEOTECHNICAL ENGINEERING

UNSATURATED AND SATURATED SOILS

Geotechnical Engineering: Unsaturated and Saturated Soils

Geotechnical Engineering: Unsaturated and Saturated Soils

Second Edition

Jean-Louis Briaud

Texas A&M University TX, USA

WILEY

Copyright © 2023 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada.

Edition History John Wiley & Sons, Inc. (1e, 2013)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www .copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www .wiley.com/go/permission.

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries and may not be used without written permission. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic formats. For more information about Wiley products, visit our website at www.wiley.com.

Library of Congress Cataloging-in-Publication Data

Names: Briaud, J.-L., author. | John Wiley & Sons, publisher.

- Title: Geotechnical engineering : unsaturated and saturated soils / Jean-Louis Briaud.
- Description: Second edition. | Hoboken, New Jersey : Wiley, 2023. | Includes bibliographical references and index.
- Identifiers: LCCN 2023007312 (print) | LCCN 2023007313 (ebook) | ISBN 9781119788690 (hardback) | ISBN 9781119788713 (adobe pdf) | ISBN 9781119788706 (epub)
- Subjects: LCSH: Geotechnical engineering—Textbooks. | Soil mechanics—Textbooks.
- Classification: LCC TA705 .B75 2023 (print) | LCC TA705 (ebook) | DDC 624.1/51—dc23/eng/20230224

LC record available at https://lccn.loc.gov/2023007312

LC ebook record available at https://lccn.loc.gov/2023007313

Cover Design: Wiley

Cover Images: © f8grapher/Shutterstock; Muhammad Fauzul/Getty Images; Argijale/Getty Images; Carol Yepes/Getty Images; imageBROKER/Luca Renner/Getty Images

CONTENTS

Acknowledgments

CHAPTER 1	Introduction			1
	1.1	Why T	'his Book?	1
	1.2	Geotec	hnical Engineering	1
	1.3	The Pa	st and the Future	2
	1.4	Geotec	hnical Engineering Can Be Fun	3
	1.5	Units		4
		Problem	ms and Solutions	4
CHAPTER 2	Case	Histories	5	7
	2.1	Washir	ngton Monument (Shallow Mat Foundation)	7
		2.1.1	The Story	7
		2.1.2	Geology and Soil Stratigraphy	7
		2.1.3	Construction	8
		2.1.4	Geometry and Load	9
		2.1.5	Soil Properties	9
		2.1.6	Bearing Capacity	9
		2.1.7	Settlement	13
	2.2	Rissa I	Landslide (Slope Stability)	15
		2.2.1	The Story	15
		2.2.2	The Soil Parameters	16
		2.2.3	Slope Stability Back Analysis	16
	2.3	Seattle	46 M-High MSE Wall (Retaining Wall)	17
		2.3.1	The Story	17
		2.3.2	The Natural Soil Conditions	17
		2.3.3	The Fill and Wall Construction	17
		2.3.4	The Wall Design	17
	2.4	The Ne	ew Orleans Charity Hospital Foundation (Deep	
		Founda	ation)	19
		2.4.1	The Story	19
		2.4.2	The Soil Conditions	20
		2.4.3	Foundation Design and Construction	20
		2.4.4	Settlement Analysis and Measurements	21
	2.5	The Eu	rotunnel Linking France and England (Tunneling)	22
		2.5.1	The Story	22
		2.5.2	Rock Stratigraphy	22

XXV

	2.5.3	Tunnel Design	23
	2.5.4	Tunnel Construction	24
2.6	The Tet	ton Dam (Earth Dam Erosion)	25
	2.6.1	The Story	25
	2.6.2	The Stratigraphy	26
	2.6.3	The Design of the Earth Dam	26
	2.6.4	Filling of the Dam	28
	2.6.5	An Explanation for the Failure	28
2.7	The Wo	oodrow Wilson Bridge (Bridge Scour)	28
	2.7.1	The Story	28
	2.7.2	The Soil Stratigraphy	29
	2.7.3	Scour Depth Calculations	29
	2.7.4	Foundation and Cost	31
2.8	San Jac	into Monument (Shallow Mat Foundation)	31
	2.8.1	The Story	31
	2.8.2	Geometry, Weight, Construction, and Loading	31
	2.8.3	Soil Stratigraphy and Parameters	32
	2.8.4	Bearing Capacity Calculations	32
	2.8.5	Settlement Calculations	32
	2.8.6	Subsidence in Houston and Impact on Settlement	
		Data	34
2.9	Pointe of	du Hoc Cliffs (Rock Erosion)	35
	2.9.1	The Story	35
	2.9.2	The Rock Stratigraphy and Properties	35
	2.9.3	The Cliff Erosion Process	35
	2.9.4	Proposed Remediation to Mitigate the Erosion	36
2.10	The To-	wer of PISA (Shallow Foundation)	37
	2.10.1	The Story	37
	2.10.2	Dimensions and Soil Stratigraphy	38
	2.10.3	Bearing Capacity, Settlement, and Inclination	40
	2.10.4	The 2001 Repair	41
2.11	The Tra	anscona Silo (Shallow Foundation)	42
	2.11.1	The Story	42
	2.11.2	Dimensions and Weight	42
	2.11.3	Soil Properties	43
	2.11.4	Bearing Capacity, Settlement, and Failure	43
	2.11.5	The Up-Righting of the Silo	44
2.12	The Sai	int John River Bridge Abutment (Slope Stability)	46
	2.12.1	The Story	46
	2.12.2	The Bridge and Right Abutment	46
	2.12.3	The Soil Conditions	46
	2.12.4	The Fill and the Approach Embankment	
		Construction	46
	2.12.5	Water Stress Induced by Embankment	
		Construction	46
	2.12.6	Slope Stability Analysis	48

2.13	Founda	tion of Briaud's House (Shrink Swell Soils)	49
	2.13.1	The Story	49
	2.13.2	The Soil Conditions	49
	2.13.3	The House Foundation	50
	2.13.4	The Tennis Court Foundation	51
2.14	The Eif	fel Tower (Deep Foundation)	51
	2.14.1	The Story	51
	2.14.2	The Soil Stratigraphy	51
	2.14.3	The Foundation	52
2.15	St. Isaa	c Cathedral (Mat Foundation)	54
	2.15.1	The Story	54
	2.15.2	Construction, Dimensions, and Load	54
	2.15.3	Soil Data	54
	2.15.4	Bearing Capacity and Settlement Calculations	56
2.16	Nationa	al Geotechnical Experimentation Sites	
	at Texa	s A&M University	57
	2.16.1	The Story	57
	2.16.2	Tieback Wall at the Sand Site	57
	2.16.3	Spread Footings Tests at the Sand Site	58
	2.16.4	Grouted Anchors Under Tension Load at the	
		Clay Site	59
	2.16.5	Drilled and Grouted Piles in Cyclic Tension	
		at the Clay Site	59
2.17	The 82'	7 M-High Burj Khalifa Tower Foundation	
	(Combi	ined Pile Raft Foundation)	60
	2.17.1	The Story	60
	2.17.2	The Soil and Rock Conditions	61
	2.17.3	The Foundation Dimensions, Loading,	
		and Settlement	62
2.18		rleans Levees and Hurricane Katrina	
	(Overto	opping Erosion)	63
	2.18.1	The Story	63
	2.18.2	The Soils and the Levees	63
	2.18.3	Erosion of the Overtopped Levees	64
2.19		Gorges Dam (Concrete Dam)	66
	2.19.1	The Story	66
	2.19.2	The Dam Dimensions and Construction	66
	2.19.3	Soil and Rock Conditions	66
	2.19.4	Environmental Impact	67
	2.19.5	Simple Calculations	69
2.20		nsai International Airport (Earth Fill in the Sea)	70
	2.20.1	The Story	70
	2.20.2	Dimensions	70
	2.20.3	Construction	70
	2.20.4	Soil Conditions	70
	2.20.5	Loading and Settlement	71
	2.20.6	Simple Calculations	72

viii CONTENTS

	2.21	The Par	nama Canal (Excavated Slopes)	73	
		2.21.1	The Story	73	
		2.21.2	Canal Dimensions and Cross-Section	73	
		2.21.3	The Gaillard/Culebra Cut	75	
		2.21.4	Stratigraphy and Soil Properties of the		
			Culebra Excavated Slopes	75	
		2.21.5	Stability of the Culebra Excavated Slopes	76	
	2.22	The Nic	e Airport Slope Failure (Slope Stability)	77	
		2.22.1	The Story	77	
		2.22.2	The Sequence of Events	78	
		2.22.3	The Soil Conditions	78	
		2.22.4	Failure Explanation: Scenario 1	79	
		2.22.5	Failure Explanation: Scenario 2 and Alternative	80	
CHAPTER 3	Engir	eering G	eology	81	
	3.1	Definition			
	3.2	The Ear	th	81	
	3.3	Geolog	ic Time	82	
	3.4	Rocks		82	
	3.5	Soils		83	
	3.6	Geologic Features			
	3.7	Geologic Maps			
	3.8	Groundwater			
		Problem	as and Solutions	87	
CHAPTER 4	Soil C	Compone	nts and Weight-Volume Parameters	91	
	4.1	Particle	s, Liquid, and Gas	91	
	4.2	Particle	Size, Shape, and Color	91	
	4.3	Compo	sition of Gravel, Sand, and Silt Particles	93	
	4.4	Compo	sition of Clay and Silt Particles	93	
	4.5	Particle	Behavior	94	
	4.6	Soil Str	ucture	94	
	4.7	Three-F	Phase Diagram	95	
	4.8	Weight-	Volume Parameters	96	
	4.9	Measur	ement of the Weight-Volume Parameters	97	
	4.10	Solving	a Weight-Volume Problem	97	
		Problem	ns and Solutions	98	
CHAPTER 5	Soil C	Classificat	tion	109	
	5.1	Sieve A	nalysis	109	
	5.2	Hydron	neter Analysis	110	
	5.3	Atterbe	rg Limits and Other Limits	113	
	5.4	Classifi	cation Parameters	116	
	5.5	Enginee	ering Significance of Classification		
		Parame	ters and Plasticity Chart	117	
	5.6	Unified	Soil Classification System	118	
	5.7	Aashto	Classification System	120	
		Problem	ns and Solutions	120	

CONTENTS	ix	
----------	----	--

CHAPTER 6	Rock			127
	6.1	Rock Groups and Ident	tification	127
	6.2	Rock Mass vs. Rock Si		127
	6.3	Rock Discontinuities		130
	6.4	Rock Index Properties		130
	6.5	Rock Engineering Prop	perties	131
	6.6	Rock Mass Rating		132
	6.7	Rock Engineering Prob	blems	133
	6.8	Permafrost		135
		Problems and Solutions	S	136
CHAPTER 7	Site I	vestigation, Drilling, an	d Sampling	143
	7.1	General		143
	7.2	Preliminary Site Invest	igation	144
	7.3	Number and Depth of I	Borings and in Situ Tests	144
	7.4	Drilling Rig and Drillir	•	144
		7.4.1 Drilling Rigs		144
			rilling Method	145
		7.4.3 Auger Drilling	-	146
	7.5	Sampling		147
		7.5.1 Sample Distur	rbance	147
			pling Methods	148
	7.6	Groundwater Level		150
	7.7	Field Identification and	l Boring Logs	150
	7.8	Soil Names		152
	7.9	Offshore Site Investiga	tions	157
		7.9.1 Offshore Geo	physical Investigations	157
		7.9.2 Offshore Geot	technical Drilling	158
		7.9.3 Offshore Geot	technical Sampling	161
		Problems and Solutions	S	163
CHAPTER 8	In Sit	Tests		171
	8.1	Standard Penetration T	est	171
	8.2	Cone Penetration Test		174
	8.3	Pressuremeter Test		176
	8.4	Dilatometer Test		180
	8.5	Vane Shear Test		181
	8.6	Borehole Shear Test		184
	8.7	Plate Load Test		185
	8.8	California Bearing Rati	io Test	187
	8.9	Pocket Penetrometer ar		187
	8.10	Pocket Erodometer Tes	st	188
	8.11	Compaction Control Te		188
		8.11.1 Sand Cone Te		188
		8.11.2 Rubber Balloo	on Test	189
			ity/Water Content Test	189
		8.11.4 Field Oven Te	•	190

		8.11.5	Lightweight Deflectometer Test	190
		8.11.6	BCD Test	191
	8.12	Hydrau	lic Conductivity Field Tests	191
		8.12.1	Borehole Tests	191
		8.12.2	Cone Penetrometer Dissipation Test	193
		8.12.3	Sealed Double-Ring Infiltrometer Test	193
		8.12.4	Two-Stage Borehole Permeameter Test	195
	8.13	Boreho	le Erosion Test	196
	8.14	Offshor	re In Situ Tests	197
		Probler	ns and Solutions	200
CHAPTER 9	Elem	ents of Geophysics		
	9.1	Genera	1	215
	9.2	Seismie	c Techniques	215
		9.2.1	Seismic Waves	215
		9.2.2	Seismic Reflection	217
		9.2.3	Seismic Refraction	218
		9.2.4	Cross-Hole Test, Seismic Cone Test, and Seismic	
			Dilatometer Test	219
		9.2.5	Spectral Analysis of Surface Waves	220
	9.3	Electric	al Resistivity Techniques	223
		9.3.1	Background on Electricity	223
		9.3.2	Resistivity Tomography	224
	9.4	Electro	magnetic Methods	226
		9.4.1	Electromagnetic Waves	226
		9.4.2	Ground-Penetrating Radar	226
		9.4.3	Time Domain Reflectometry	228
	9.5	Remote	e Sensing Techniques	228
		9.5.1	LIDAR	228
		9.5.2	Satellite Imaging	229
			ns and Solutions	230
CHAPTER 10	Labo	ratory Te	sts	235
	10.1	Genera	1	235
	10.2	Measur		236
		10.2.1	Normal Stress or Pressure	236
		10.2.2	Shear Stress	237
		10.2.3	Water Compression Stress	237
		10.2.4	Water Tension Stress	237
		10.2.5	Normal Strain	241
		10.2.6	Shear Strain	243
		10.2.7	Bender Elements	243
	10.3		ction Test: Dry Unit Weight	243
	10.5	10.3.1	Saturated Soils	243
		10.3.2	Unsaturated Soils	243
	10.4		ction Test: Soil Modulus	243 246
	10.4	10.4.1	Saturated Soils	240 246
		10.4.2	Unsaturated Soils	246
		10.1.2	Chisatatata Golio	210

	10.5	10.5 Consolidation Test	
		10.5.1 Saturated Soils	246
		10.5.2 Unsaturated Soils	250
	10.6	Swell Test	250
		10.6.1 Saturated Soils	250
		10.6.2 Unsaturated Soils	250
	10.7	Shrink Test	252
		10.7.1 Saturated Soils	252
		10.7.2 Unsaturated Soils	252
	10.8	Collapse Test	252
		10.8.1 Saturated Soils	252
		10.8.2 Unsaturated Soils	252
	10.9	Direct Shear Test	253
		10.9.1 Saturated Soils	253
		10.9.2 Unsaturated Soils	253
	10.10	Simple Shear Test	255
		10.10.1 Saturated Soils	255
		10.10.2 Unsaturated Soils	256
	10.11	Unconfined Compression Test	256
		10.11.1 Saturated Soils	256
		10.11.2 Unsaturated Soils	256
	10.12	Triaxial Test	257
		10.12.1 Saturated Soils	257
		10.12.2 Unsaturated Soils	261
	10.13	Resonant Column Test	262
		10.13.1 Saturated Soils	262
		10.13.2 Unsaturated Soils	265
	10.14	Lab Vane Test	265
		10.14.1 Saturated Soils	265
		10.14.2 Unsaturated Soils	266
	10.15	Soil Water Retention Curve (Soil Water Characteristic	
		Curve) Test	266
		10.15.1 Saturated Soils	266
		10.15.2 Unsaturated Soils	267
	10.16	Constant Head Permeameter Test	268
		10.16.1 Saturated Soils	268
		10.16.2 Unsaturated Soils	269
	10.17	Falling Head Permeameter Test for Saturated Soils	270
	10.18	Wetting Front Test for Unsaturated Soils	272
	10.19	Air Permeability Test for Unsaturated Soils	273
	10.20	Erosion Test	273
		10.20.1 Saturated Soils	273
		10.20.2 Unsaturated Soils	275
		Problems and Solutions	276
CHAPTER 11	Stress	es, Effective Stress, Water Stress, Air Stress, and Strains	301
	11.1	General	301
	11.2	Stress Vector, Normal Stress, Shear Stress, and Stress	
		Tensor	301

xii contents

CHAPTER 12

11.3	Sign Convention for Stresses and Strains	302
11.4	Calculating Stresses on Any Plane: Equilibrium Equations	
	for Two-Dimensional analysis	302
11.5	Calculating Stresses on Any Plane: Mohr Circle for	
	Two-Dimensional Analysis	303
11.6	Mohr Circle in Three Dimensions	304
11.7	Stress Invariants	304
11.8	Displacements	304
11.9	Normal Strain, Shear Strain, and Strain Tensor	305
11.10	Cylindrical Coordinates and Spherical Coordinates	306
11.11	Stress-Strain Curves	307
11.12	Stresses in the Three Soil Phases	307
11.13	Effective Stress (Unsaturated Soils)	307
11.14	Effective Stress (Saturated Soils)	308
11.15	Area Ratio Factors α and β	308
11.16	Water Stress Profiles	310
11.17	Water Tension and Suction	310
	11.17.1 Matric Suction	311
	11.17.2 Contractile Skin	313
	11.17.3 Osmotic Suction	313
	11.17.4 Relationship between Total Suction and Relative	
	Humidity	313
	11.17.5 Trees	315
11.18	Precision on Water Content and Water Tension	316
11.19	Stress Profile at Rest in Unsaturated Soils	316
11.20	Soil Water Retention Curve	318
11.21	Independent Stress State Variables	318
	Problems and Solutions	319
Proble	em-Solving Methods	333
12.1	General	333
12.1	Drawing to Scale as a First Step	333
12.2	Primary Laws	333
12.3	Continuum Mechanics Methods	333
12.4	12.4.1 Solving a Failure Problem: Limit Equilibrium,	554
	Method of Characteristics, Lower and Upper	
	Bound Theorems	334
	12.4.2 Examples of Solving a Failure Problem	334
	12.4.2 Examples of Solving a Fandre Froblem 12.4.3 Solving a Deformation Problem	336
	12.4.4 Example of Solving a Deformation Problem	336
	12.4.5 Solving a Flow Problem	339
	e	
125	12.4.6 Example of Solving a Flow Problem Numerical Simulation Methods	339 343
12.5		343
		343
	12.5.2 Examples of Finite Difference Solutions	344
	12.5.3 Finite Element Method	347
	12.5.4 Example of Finite Element Solution	352

		12.5.5	Boundary Element Method	356
		12.5.6	Discrete Element Method	356
	12.6	Probabil	ity and Risk Analysis	357
		12.6.1	Background	357
		12.6.2	Procedure for Probability Approach	360
		12.6.3	Risk and Tolerable Risk	362
		12.6.4	Example of Probability Approach	364
	12.7	Regressi	on Analysis	365
	12.8	Artificia	l Neural Network Method	366
	12.9	Dimensi	onal Analysis	367
		12.9.1	Buckingham \prod Theorem	367
		12.9.2	Examples of Dimensional Analysis	368
	12.10	Similitu	de Laws for Experimental Simulations	369
		12.10.1	Similitude Laws	369
		12.10.2	Example of Similitude Laws Application	
			for a Scaled Model	370
		12.10.3	Example of Similitude Laws Application	
			for a Centrifuge Model	370
	12.11	Types of	Analyses (Drained–Undrained, Effective	
			Total Stress, Short-Term–Long-Term)	371
		Problem	s and Solutions	371
CHAPTER 13	Soil C	Constitutiv	e Models	395
	13.1	Elasticit	у	395
		13.1.1	Elastic Model	395
		13.1.2	Example of Use of the Elastic Model	396
	13.2	Linear V	<i>V</i> iscoelasticity	397
		13.2.1	Simple Models: Maxwell and Kelvin-Voigt Models	397
		13.2.2	General Linear Viscoelasticity	398
	13.3	Plasticit	У	399
		13.3.1	Some Yield Functions and Yield Criteria	400
		13.3.2	Example of Use of Yield Criteria	401
		13.3.3	Plastic Potential Function and Flow Rule	401
		13.3.4	Hardening or Softening Rule	402
		13.3.5	Example of Application of Plasticity Method	402
	13.4		n Soil Models	403
		13.4.1	Duncan-Chang Hyperbolic Model	403
		13.4.2	Modified Cam Clay Model	404
		13.4.3	Barcelona Basic Model	405
		13.4.4	Water Stress Predictions	407
		Problem	s and Solutions	407
CHAPTER 14	Flow	of Fluid a	nd Gas Through Soils	419
	14.1	General		419
	14.2		Water in a Saturated Soil	419
		14.2.1	Discharge Velocity, Seepage Velocity,	
			and Conservation of Mass	419
		14.2.2	Heads	420
		14.2.3	Hydraulic Gradient	420

		14.2.4	Darcy's Law: The Constitutive Law	420
		14.2.5	Hydraulic Conductivity	421
		14.2.6	Field vs. Lab Values of Hydraulic Conductivity	422
		14.2.7	Seepage Force	422
		14.2.8	Quick Sand Condition and Critical Hydraulic	
			Gradient	423
		14.2.9	Quick Clay	424
		14.2.10	Sand Liquefaction	424
		14.2.11	Two-Dimensional Flow Problem	424
		14.2.12	Drawing a Flow Net for Homogeneous Soil	426
		14.2.13	Properties of a Flow Net for Homogeneous Soil	427
		14.2.14	Calculations Associated with Flow Nets	428
		14.2.15	Flow Net for Hydraulically Anisotropic Soil	429
		14.2.16	Flow and Flow Net for Layered Soils	429
	14.3	Flow of	Water and Air in Unsaturated Soil	431
		14.3.1	Hydraulic Conductivity for Water and for Air	431
		14.3.2	One-Dimensional Flow	432
		14.3.3	Three-Dimensional Water Flow	434
		14.3.4	Three-Dimensional Air Flow	435
		Problem	s and Solutions	436
CHAPTER 15	Defor	mation Pr	operties	447
	15.1	Modulus	s of Deformation: General	447
	15.2	Modulus	s: Which One?	448
	15.3	Modulus	s: Influence of State Factors	448
	15.4	Modulus	s: Influence of Loading Factor	449
	15.5	Modulus	s: Differences Between Fields of Application	451
	15.6	Modulus	s: Modulus of Subgrade Reaction, and Stiffness	451
	15.7	Commo	n Values of Soil Modulus and the	
		Poisson'	s Ratio	452
	15.8	Correlat	ions with Other Tests	454
	15.9	Modulus	s: A Comprehensive Model	454
	15.10	Initial Ta	angent Modulus G_o or G_{max}	457
	15.11	Reduction	on of G_{max} with Strain: The G/G_{max} Curve	459
			olidation Pressure and Overconsolidation	
		Ratio fro	om Consolidation Test	459
	15.13	Compre	ssion Index, Recompression Index, and	
		Seconda	ry Compression Index from the	
		Consolie	lation Test	461
	15.14	Time Ef	fect From the Consolidation Test	462
	15.15	Modulus	s, Time Effect, and Cyclic Effect from the	
		Pressure	meter Test	463
	15.16	Resilien	t Modulus for Pavements	465
	15.17	Unsatura	ated Soils: Effect of Drying and Wetting on the	
		Modulus	3	465
	15.18	Shrink-S	Swell Deformation Behavior, Shrink-Swell	
		Modulus	3	466
	15.19	Collapse	e Deformation Behavior	470
		Problem	s and Solutions	471

CHAPTER 16	Shear	Shear Strength Properties		
	16.1	General	485	
	16.2	Basic Experiments	485	
		16.2.1 Experiment 1	485	
		16.2.2 Experiment 2	486	
		16.2.3 Experiment 3	486	
		16.2.4 Experiment 4	486	
		16.2.5 Experiment 5	486	
		16.2.6 Experiment 6	487	
	16.3	Stress-Strain Curve, Water Stress Response, and		
		Stress Path	487	
	16.4	Shear Strength Envelope	488	
		16.4.1 General Case	488	
		16.4.2 The Case of Concrete	489	
		16.4.3 Overconsolidated Fine-Grained Soils	490	
		16.4.4 Coarse-Grained Soils	490	
	16.5	Unsaturated Soils	490	
	16.6	Experimental Determination of Shear Strength		
		(Lab Tests, In Situ Tests)	491	
	16.7	Estimating Effective Stress Shear Strength Parameters	492	
		16.7.1 Coarse-Grained Soils	492	
		16.7.2 Fine-Grained Soils	494	
	16.8	Undrained Shear Strength of Saturated Fine-Grained Soils	495	
		16.8.1 Weak Soil Skeleton: Soft, Normally		
		Consolidated Soils	496	
		16.8.2 Strong Soil Skeleton: Overconsolidated Soils	496	
		16.8.3 Rate of Loading Effect on the Undrained		
		Strength	497	
	16.9	The Ratio S_U/σ'_{OV} and the Shansep Method	498	
		Undrained Shear Strength for Unsaturated Soils	498	
		Pore-Pressure Parameters A and B	499	
	16.12	Estimating Undrained Shear Strength Values	500	
		Residual Strength Parameters and Sensitivity	502	
		Strength Profiles	503	
		Types of Analyses	503	
		Transformation from Effective Stress Solution to		
		Undrained Strength Solution	504	
		Problems and Solutions	504	
CHAPTER 17	Thern	nodynamics for Soil Problems	511	
	17.1	General	511	
	17.2	Definitions	511	
	17.3	Constitutive and Fundamental Laws	512	
	17.4	Heat Conduction Theory	512	
	17.5	Axisymmetric Heat Propagation	513	
	17.6	Thermal Properties of Soils	514	
	17.7	Multilayer Systems	515	

	17.8	Applications			
	17.9	Thermal	Cone Penetrometer Test	516	
	17.10	Frozen S	Soils	517	
		Problem	as and Solutions	519	
CHAPTER 18	Shallow Foundations				
	18.1	Definitions			
	18.2	Case Hi	ase History		
	18.3	Definitio	Definitions and Design Strategy		
	18.4	Limit States, Load and Resistance Factors, and Factor of			
		Safety		526	
	18.5	General Behavior			
	18.6	Ultimate	e Bearing Capacity	529	
		18.6.1	Direct Strength Equations	529	
		18.6.2	Terzaghi's Ultimate Bearing Capacity Equation	532	
		18.6.3	Layered Soils	534	
		18.6.4	Special Loading	536	
		18.6.5	Ultimate Bearing Capacity of Unsaturated Soils	537	
	18.7	Load Se	ttlement Curve Approach	537	
	18.8	Settleme	ent	540	
		18.8.1	General Behavior	540	
		18.8.2	Elasticity Approach for Homogeneous Soils	541	
		18.8.3	Elasticity Approach for Layered Soils	542	
		18.8.4	Chart Approach	543	
		18.8.5	General Approach	545	
		18.8.6	Zone of Influence	545	
		18.8.7	Stress Increase with Depth	546	
		18.8.8	Choosing a Stress-Strain Curve and Setting Up the		
			Calculations	548	
		18.8.9	Consolidation Settlement: Magnitude	548	
		18.8.10	Consolidation Settlement: Time Rate	549	
		18.8.11	Creep Settlement	549	
			Bearing Pressure Values	551	
	18.9	Shrink-S	Swell Movement	551	
		18.9.1	Water Content or Water Tension vs. Strain Curve	551	
		18.9.2	Shrink-Swell Movement Calculation Methods	551	
		18.9.3	Step-by-Step Procedure	553	
		18.9.4	Case History	554	
	18.10		ions on Shrink-Swell Soils	555	
		18.10.1	Types of Foundations on Shrink-Swell Soils	555	
			Design Method for Stiffened Slabs on Grade	556	
			e Movements	560	
	18.12	-	lat Foundations	561	
			General Principles	561	
			Example of Settlement Calculations	562	
			Two Case Histories	564	
	18.13	-	e Spread Footings and Interaction	567	
		18.13.1	Interaction Effect	567	

		18.13.2	Settlement Calculations	567	
		18.13.3 Comparison Between Multiple Spread Footings and a Mat Foundation			
				568	
		Problem	ns and Solutions	569	
CHAPTER 19	Deep	Foundati	ons	591	
	19.1	Differer	Different Types of Deep Foundations		
	19.2	Design	Strategy	591	
	19.3	Pile Ins	tallation	593	
		19.3.1	Installation of Bored Piles	593	
		19.3.2	Nondestructive Testing of Bored Piles	595	
		19.3.3	Installation of Driven Piles	598	
		19.3.4	Pile Driving Formulas	599	
		19.3.5	Wave Propagation in a Pile	600	
		19.3.6	Wave Equation Analysis	601	
		19.3.7	Information from Pile Driving Measurements		
			(PDA, Case, CAPWAP)	605	
		19.3.8	Suction Caissons	608	
		19.3.9	Load Testing (Static, Statnamic, Osterberg)	609	
	19.4	Vertical	Load: Single Pile	612	
		19.4.1	Ultimate Vertical Capacity for a Single Pile	613	
		19.4.2	Miscellaneous Questions about the Ultimate		
			Capacity of a Single Pile	619	
		19.4.3	Settlement of a Single Pile	623	
	19.5	Vertical	Load: Pile Group	625	
		19.5.1	Ultimate Vertical Capacity of a Pile Group	625	
		19.5.2	Settlement of Pile Groups	627	
	19.6	Downda	ag	629	
		19.6.1	Definition and Behavior	629	
		19.6.2	Downdrag on a Single Pile	629	
		19.6.3	Sample Downdrag Calculations	630	
		19.6.4	LRFD Provisions	633	
		19.6.5	Downdrag on a Group of Piles	634	
	19.7	Piles in	Shrink-Swell Soils	634	
		19.7.1	The Soil Shrinks	635	
		19.7.2	The Soil Swells	635	
	19.8		tal Load and Moment: Single Pile	636	
		19.8.1	Definitions and Behavior	636	
		19.8.2	Ultimate Capacity	636	
		19.8.3	Displacement and Maximum Moment:		
			Long Flexible Pile	637	
		19.8.4	Displacement and Maximum Moment:		
			Short Rigid Pile	638	
		19.8.5	Modulus of Subgrade Reaction	639	
		19.8.6	Free-Head and Fixed-Head Conditions	639	
		19.8.7	Rate of Loading Effect	640	
		19.8.8	Cyclic Loading Effect	641	

		19.8.9	<i>P-y</i> Curve Approach	642		
		19.8.10	Horizontal Loading Next to a Trench	643		
	19.9	Horizon	tal Load and Moment: Pile Group	643		
		19.9.1	Overturning Moment	644		
		19.9.2	Ultimate Capacity	645		
		19.9.3	Movement	646		
	19.10	Combin	ed Piled Raft Foundation	647		
		Problem	as and Solutions	649		
CHAPTER 20	Slope	Slope Stability				
	20.1	General		679		
	20.2	Design .	679			
	20.3	Infinite	Slopes	680		
		20.3.1	Dry Sand	681		
		20.3.2	Dry $c' - \varphi'$ Soil	681		
		20.3.3	$c' - \varphi'$ Soil with Seepage	681		
		20.3.4	$c' - \varphi'$ Soil with Unsaturated Conditions	682		
	20.4	Seepage	Force in Stability Analysis	682		
	20.5	Plane St	683			
	20.6	Block A	684			
	20.7	Slopes v	684			
	20.8	Chart M		685		
		20.8.1	Taylor Chart	685		
		20.8.2	Spencer Chart	686		
		20.8.3	Janbu Chart	687		
		20.8.4	Morgenstern Chart	689		
	20.9		of Slices	689		
		20.9.1	Ordinary Method of Slices	691		
		20.9.2	Bishop Simplified Method	694		
		20.9.3	Generalized Equilibrium Method	694		
		20.9.4	Critical Failure Circle	696		
	20.10	Water S	tress for Slope Stability	696		
			Piezometric and Phreatic Surface	696		
			Water Stress Ratio Value	696		
			Grid of Water Stress Values	697		
			Water Stress Due to Loading	697		
			Seepage Analysis	697		
	20.11		f Analyses	697		
		• 1	sive Failure in Strain-Softening Soils	698		
		-	Slide Failures in Compacted Unsaturated			
	20110	Embank	_	698		
	20.14		ced Slopes	699		
	20111		Reinforcement Type	699		
			Factor of Safety	699		
	20.15		listic Approach	699		
	20.15		Example 1	700		
			Example 2	700		
			Example 2 Example 3	700		
		20.15.5	Enumpie 5	701		

	20.16	Three-Dimensional Circular Failure Analysis	701	
	20.17	Finite Element Analysis	702	
	20.18	Stability of Slope Corners	703	
	20.19	Slope Stability Databases	703	
	20.20	Seismic Slope Analysis	704	
		20.20.1 Pseudostatic Method	704	
		20.20.2 Newmark's Displacement Method	705	
		20.20.3 Post-Earthquake Stability Analysis	706	
		20.20.4 Dynamic Finite Element Analysis	706	
	20.21	Monitoring	706	
	20.22	Repair Methods	709	
		20.22.1 Increase the Resisting Moment	709	
		20.22.2 Decrease the Driving Moment	710	
		Problems and Solutions	710	
CHAPTER 21	Comp	Compaction		
	21.1	General	727	
	21.2	Compaction Laboratory Tests	728	
	21.3	Compaction Field Tests	729	
	21.4	Compaction and Soil Type	730	
	21.5	Intelligent Roller Compaction	731	
		21.5.1 Soil Modulus from Vibratory Rollers	732	
		21.5.2 Roller Measurements as Compaction Indices	733	
	21.6	Impact Roller Compaction	733	
	21.7	Dynamic or Drop-Weight Compaction	735	
		Problems and Solutions	737	
CHAPTER 22	Retain	ning Walls	743	
	22.1	Different Types (Top-Down, Bottom-Up)	743	
	22.2	Active, at Rest, Passive Earth Pressure, and Associated		
		Displacement	743	
	22.3	Earth Pressure Theories	744	
		22.3.1 Coulomb Earth Pressure Theory	744	
		22.3.2 Rankine Earth Pressure Theory	746	
		22.3.3 Earth Pressure Theory by Mohr Circle	747	
		22.3.4 Water in the Case of Compression Stress		
		(Saturated)	748	
		22.3.5 Water in the Case of Tension Stress		
		(Unsaturated or Saturated)	749	
		22.3.6 Influence of Surface Loading		
		(Line Load, Pressure)	749	
		22.3.7 General Case and Earth Pressure Profiles	749	
	22.4	Special Case: Undrained Behavior of Fine-Grained		
		Soils	750	
	22.5	At-Rest Earth Pressure		
	22.6	Earth Pressure Due to Compaction		
	22.7	Earth Pressures in Shrink-Swell Soils	752	

XX CONTENTS

	22.8	Displacements	753		
	22.9	Gravity Walls	753		
	22.10	Mechanically Stabilized Earth Walls			
		22.10.1 External Stability	757		
		22.10.2 Internal Stability	757		
	22.11	Cantilever Top-Down Walls			
		22.11.1 Depth of Embedment and Pressure Diagram	760		
		22.11.2 Displacement of the Wall, Bending Moment,			
		and <i>P</i> -y Curves	760		
	22.12	Anchored Walls and Strutted Walls	762		
		22.12.1 Pressure Distribution	763		
		22.12.2 Pressure vs. Movement	764		
		22.12.3 Base Instability	765		
		22.12.4 Movement of Wall and Ground Surface	765		
		22.12.5 Anchors	767		
		22.12.6 Embedment Depth and Downdrag	769		
		22.12.7 The <i>P</i> - <i>y</i> Curve Approach and the FEM Approach	771		
	22.13	Soil Nail Walls	771		
		22.13.1 External Stability	771		
		22.13.2 Internal Stability	774		
		22.13.3 Wall Movement	776		
		22.13.4 Other Issues	776		
	22.14	Special Case: Trench	776		
		Problems and Solutions	778		
CHAPTER 23	Eartho	Earthquake Geoengineering			
	23.1	Background	807		
	23.2	Earthquake Magnitude	807		
	23.3	Wave Propagation	809		
	23.4	Dynamic Soil Properties			
	23.5	Ground Motion			
	23.6	Seismic Hazard Analysis			
	23.7	Ground Response Analysis			
		23.7.1 One-Dimensional Solution for Undamped			
		23.7.1 One-Dimensional Solution for Undamped Linear Soil on Rigid Rock	814		
			814		
		Linear Soil on Rigid Rock	814 815		
		Linear Soil on Rigid Rock23.7.2One-Dimensional Solution for Damped			
	23.8	Linear Soil on Rigid Rock 23.7.2 One-Dimensional Solution for Damped Linear Soil on Rigid Rock	815		
	23.8	Linear Soil on Rigid Rock 23.7.2 One-Dimensional Solution for Damped Linear Soil on Rigid Rock 23.7.3 Layered Soils	815 815		
	23.8	Linear Soil on Rigid Rock 23.7.2 One-Dimensional Solution for Damped Linear Soil on Rigid Rock 23.7.3 Layered Soils Design Parameters	815 815 816		
	23.8	Linear Soil on Rigid Rock 23.7.2 One-Dimensional Solution for Damped Linear Soil on Rigid Rock 23.7.3 Layered Soils Design Parameters 23.8.1 Site Classes A–E for Different Soil Stiffness	815 815 816 816		
	23.8 23.9	Linear Soil on Rigid Rock 23.7.2 One-Dimensional Solution for Damped Linear Soil on Rigid Rock 23.7.3 Layered Soils Design Parameters 23.8.1 Site Classes A–E for Different Soil Stiffness 23.8.2 Code-Based Spectrum	815 815 816 816 817		
		Linear Soil on Rigid Rock 23.7.2 One-Dimensional Solution for Damped Linear Soil on Rigid Rock 23.7.3 Layered Soils Design Parameters 23.8.1 Site Classes A–E for Different Soil Stiffness 23.8.2 Code-Based Spectrum 23.8.3 Hazard Levels	815 815 816 816 817 818		
		Linear Soil on Rigid Rock 23.7.2 One-Dimensional Solution for Damped Linear Soil on Rigid Rock 23.7.3 Layered Soils Design Parameters 23.8.1 Site Classes A–E for Different Soil Stiffness 23.8.2 Code-Based Spectrum 23.8.3 Hazard Levels Liquefaction	815 815 816 816 817 818 818		
		Linear Soil on Rigid Rock 23.7.2 One-Dimensional Solution for Damped Linear Soil on Rigid Rock 23.7.3 Layered Soils Design Parameters 23.8.1 Site Classes A–E for Different Soil Stiffness 23.8.2 Code-Based Spectrum 23.8.3 Hazard Levels Liquefaction 23.9.1 Phenomenon	815 815 816 816 817 818 818 818		

	23.11	Seismic	Design of Retaining Walls	824		
		23.11.1	Seismic Design of Gravity Walls	824		
		23.11.2	Water Pressures on Walls during an Earthquake	825		
		23.11.3	Seismic Design of MSE Walls	827		
		23.11.4	Seismic Design of Cantilever Walls	827		
		23.11.5	Seismic Design of Anchored Walls	827		
	23.12	Seismic	Design of Foundations	827		
		Problem	as and Solutions	829		
CHAPTER 24	Erosio	rosion of Soils and Scour Problems				
	24.1	The Ero	sion Phenomenon	843		
	24.2	Erosion	Models	844		
	24.3	Measuring the Erosion Function				
	24.4	Soil Erosion Categories				
	24.5	Rock Erosion				
	24.6	Water Velocity				
	24.7	Geometry of the Obstacle				
	24.8	Bridge S	Scour	853		
		24.8.1	Maximum Scour Depth (z_{max}) Analysis	854		
		24.8.2	Maximum Shear Stress at Soil-Water Boundary			
			When Scour Begins	858		
		24.8.3	Final Scour Depth (z_{final}) Analysis for Constant			
			Velocity Flow and Uniform Soil	860		
		24.8.4	Final Scour Depth (Z_{final}) Analysis for			
			a Velocity Hydrograph and Layered Soil	861		
		24.8.5	The Woodrow Wilson Bridge Case History	862		
		24.8.6	The Observation Method for Scour	864		
	24.9	River M	leandering	864		
		24.9.1	Predicting River Meandering	864		
		24.9.2	The Brazos River Meander Case History			
			(Park, 2007)	866		
		24.9.3	Observation Method for Meanders	868		
	24.10	Levee C	Overtopping	869		
		24.10.1	General Methodology	869		
			Hurricane Katrina Levee Case History:			
			New Orleans	870		
	24.11	Counter	measures for Erosion Protection	871		
		24.11.1	Rip Rap	871		
		24.11.2		872		
	24.12	Internal	Erosion of Earth Dams	873		
			The Phenomenon	873		
			Most Susceptible Soils	874		
			Criterion to Evaluate Internal Erosion			
			Potential	874		
		24.12.4	Remedial Measures	876		
			as and Solutions	877		
				/		

xxii CONTENTS

CHAPTER 25	Geoenvironmental Engineering			893
	25.1	Introduction		
	25.2	Types of Wastes and Contaminants		
	25.3	Laws and Regulations		
	25.4	Geochemistry Background		
		25.4.1		895
		25.4.2		897
	25.5	Contam		898
	2010	25.5.1	Contamination Sources	898
		25.5.2		898
		25.5.3		900
	25.6	Remedi	I.	904
	23.0		Risk Assessment and Strategy	904 904
		25.6.2		904 905
		25.6.3		903 908
	25.7		Groundwater Remediation	909
	25.7	Landfill		910 010
		25.7.1	Waste Properties	910
			Regulations	912
		25.7.3	Liners	912
		25.7.4		913
			Leachate Collection	914
			Landfill Slopes	914
		25.7.7	Gas Generation and Management	915
	25.8	Future C	Considerations	916
		Problem	as and Solutions	917
CHAPTER 26	Geosy	Geosynthetics		
	26.1	General		
	26.2	Types of	f Geosynthetics	925
	26.3		es of Geosynthetics	926
		-	Properties of Geotextiles	926
		26.3.2	Properties of Geomembranes	929
		26.3.3	Properties of Geogrids	930
		26.3.4	Properties of Geosynthetics Clay Liners	931
		26.3.5	Properties of Geofoams	932
		26.3.6	Properties of Geonets	933
	26.4		for Separation	933
	26.5	U	of Liners and Covers	934
		-		
	26.6	26.6.1	for Reinforcement Road Reinforcement	935 035
				935 026
		26.6.2	Mechanically Stabilized Earth Geosynthetic Walls	936 020
		26.6.3	Reinforced Slopes	939
	a	26.6.4	Reinforced Foundations and Embankments	939
	26.7	-	for Filtration and Drainage	940
	26.8	Design	for Erosion Control	941

	26.9	Other Design Applications		942	
		26.9.1	Lightweight Fills	942	
		26.9.2	Compressible Inclusions	942	
		26.9.3	Thermal Insulation	943	
		26.9.4	Geosynthetics and Landfill Slopes	943	
		Probler	ns and Solutions	943	
CHAPTER 27	Soil I	Improvement			
	27.1	Overvie	Overview		
	27.2	Soil Im	provement Without Admixture in		
		Coarse	-Grained Soils	957	
		27.2.1	Compaction	957	
		27.2.2	Dynamic Compaction	957	
		27.2.3	Vibrocompaction	957	
		27.2.4	Other Methods	960	
	27.3	Soil Im	provement Without Admixture in		
		Fine-G	rained Soils	961	
		27.3.1	Displacement-Replacement	961	
		27.3.2	Preloading Using Fill	961	
		27.3.3	Prefabricated Vertical Drains and Preloading		
			Using Fill	963	
		27.3.4	Preloading Using Vacuum	964	
		27.3.5	Electro-Osmosis	965	
		27.3.6	Ground Freezing	965	
		27.3.7	Hydro-Blasting Compaction	965	
	27.4	Soil Im	provement with Replacement	966	
		27.4.1	Stone Columns Without Geosynthetic Sock	966	
		27.4.2	Stone Columns with Geosynthetic Encasement	967	
		27.4.3	Dynamic Replacement	968	
	27.5	Soil Im	provement with Grouting and Admixtures	969	
		27.5.1	Particulate Grouting	969	
		27.5.2	Chemical Grouting	970	
		27.5.3	Jet Grouting	970	
		27.5.4	Compaction Grouting	970	
		27.5.5	Compensation Grouting	970	
		27.5.6	Mixing Method	971	
		27.5.7	Lime Treatment	972	
		27.5.8	Microbial Methods	972	
	27.6	Soil Im	provement with Inclusions	973	
		27.6.1	Mechanically or Geosynthetically Stabilized		
			Earth	973	
		27.6.2	Ground Anchors and Soil Nails	973	
		27.6.3	Geosynthetic Mat and Column-Supported		
			Embankment	973	
	27.7	Selectio	on of Soil Improvement Method	975	
			ns and Solutions	975	

xxiv contents CHAPTER 28

Technical Communications 981 28.1 General 981 28.2 Emails 981 28.3 Letters 982 28.4 Geotechnical Reports 982 28.5 Theses and Dissertations 982 28.6 Visual Aids for Reports 984 28.7 Phone Calls 984 28.8 Meetings 984 28.9 Presentations and Powerpoint Slides 985 28.10 Media Interaction 985 28.11 Ethical Behavior 986 28.12 Professional Societies 986 28.13 Rules for a Successful Career 986 987 References Index 1005

ACKNOWLEDGMENTS

FIRST EDITION

One of the greatest joys in writing this book was working as a team with all my PhD students. From 2010 to 2013, they contributed tremendously to making this book possible. The leader of the team was Ghassan Akrouch. I thank them all very sincerely for their magnificent help. The beautiful memories of our work together on this huge project will be with me as a source of strength and friendship forever.

- Ghassan Akrouch (Lebanon)
- Alireza Mirdamadi (Iran)
- Deeyvid Saez (Panama)
- Mojdeh Asadollahipajouh (Iran)

- Congpu Yao (China)
- Stacey Tucker (USA)
- Negin Yousefpour (Iran)
- Oswaldo Bravo (Peru)
- DoHyun Kim (Korea)
- Axel Montalvo (Puerto Rico)
- Gang Bi (China)
- Mohsen Madhavi (Iran)
- Seung Jae Oh (Korea)
- Seok Gyu Kim (Korea)
- Mohammad Aghahadi (Iran)
- Yasser Koohi (Iran)
- Carlos Fuentes (Mexico)

xxvi ACKNOWLEDGMENTS

My colleagues also provided advice on many topics:

- Marcelo Sanchez (Texas A&M University)
- Don Murff (Exxon)
- Jose Roesset (Texas A&M University)

- Giovanna Biscontin (Texas A&M University)
- Chuck Aubeny (Texas A&M University)
- Zenon Medina Cetina (Texas A&M University)
- Vincent Drnevich (Purdue University)
- Chris Mathewson (Texas A&M University)

One person stands out as a major helper in this book project by her dedication to the task and her relentless denial of the impossible: my assistant Theresa Taeger, who took care of the hundreds of illustration permission requests in record time.

I also want to thank all those who share their knowledge and intellectual property online. Without the Internet as a background resource, this work would have taken much longer.

SECOND EDITION

The new chapter on case histories required many figures to be redrawn. Anna Timchenko stands out as the one who single-handedly, patiently, and very reliably prepared dozens of figures for that chapter. Others making significant contributions to the illustrations in the second edition include Jerome Sfeir, Erick Cruz, Tehseena Ali, Anna Shidlovskaya, and Blake Thurman.

Anna TIMCHENKO

Jerome SFEIR

Erick CRUZ

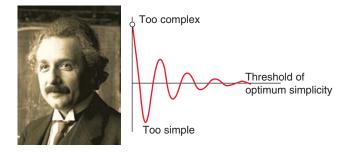
ACKNOWLEDGMENTS XXVII

Tehseena ALI

Anna SHIDLOVSKAYA

Blake THURMAN

CHAPTER 1


Introduction

1.1 WHY THIS BOOK?

"Things should be made as simple as possible but not a bit simpler than that."

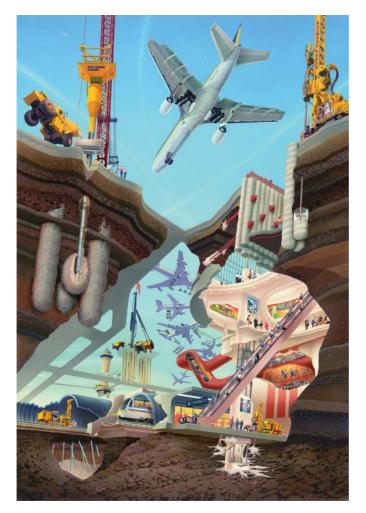
Albert Einstein (Safir and Safire, 1982)

Finding the Einstein threshold of optimum simplicity was a constant goal for the author when writing this book (Figure 1.1). The first driving force for writing it was the coming of age of unsaturated soil mechanics: There was a need to introduce geotechnical engineering as dealing with true three-phase soils while treating saturated soil as a special case, rather than the other way around. The second driving force was to cover as many geotechnical engineering topics as reasonably possible in an introductory book, to show the vast domain covered by geotechnical engineering and its important contributions to society. Dams, bridges, buildings, pavements, landfills, tunnels, and many other infrastructure elements involve geotechnical engineering. The driving force for the second edition was the desire to include case histories to further demonstrate the considerable role played by geotechnical engineers in society and also to update the first edition. The intended audience is anyone who is starting in the field of geotechnical engineering, including university students.

Figure 1.1 Einstein threshold of optimum simplicity. (Source: Photo by Ferdinand Schmutzer.)

1.2 GEOTECHNICAL ENGINEERING

Geotechnical engineering is a young (\sim 100 years) professional field dealing with soils within a few hundred meters of a planet's surface for the purpose of civil engineering structures. For geotechnical engineers, soils can be defined as loosely bound to unbound, naturally occurring materials that cover the top few hundred meters of a planet. In contrast, rock is a strongly bound, naturally occurring material found within similar depths or deeper. At the boundary between soils and rocks are intermediate geo-materials. The classification tests and the range of properties described in this book help to distinguish between these three types of naturally occurring materials. Geotechnical engineers must make decisions in the best interest of the public with respect to safety and economy. Their decisions are related to topics such as:


- Foundations
- Slopes
- · Retaining walls
- Dams
- Landfills
- Tunnels

These geotechnical structures or projects are subjected to loads, which include:

- Loads from a structure
- · Weight of a slope
- · Push on a retaining wall
- Environmental loads, such as waves, wind, rivers, earthquakes, floods, droughts, and chemical changes, among others

Note that current practice is based on testing an extremely small portion of the soil or rock present in the project area. A typical soil investigation might involve testing 0.0001% of the soil that will provide the foundation support for the structure. Yet, on the basis of this extremely limited data, the

Geotechnical Engineering: Unsaturated and Saturated Soils, Second Edition. Jean-Louis Briaud. © 2023 John Wiley & Sons, Inc. Published 2023 by John Wiley & Sons, Inc.

Figure 1.2 A rendition of the geotechnical engineering world. (Source: Courtesy of Hayward Baker Inc., Geotechnical Contractor.)

geotechnical engineer must predict the behavior of the entire heterogeneous mass of soil. This is why geotechnical engineering is a very difficult discipline. Yet, as Terzaghi is said to have noted, there is no glory in foundations. Indeed, most of our work is buried (Figure 1.2). For example, everyone knows the Eiffel Tower in Paris, but very few know about its foundation.

1.3 THE PAST AND THE FUTURE

While it is commonly agreed that geotechnical engineering started with the work of Karl Terzaghi at the beginning of the 20th century, history is rich in instances where soils and soils-related engineering played an important role in the evolution of humankind (Kerisel, 1985; Peck, 1985; Skempton, 1985). In prehistoric times (before 3000 BC), soil was used as a building material. In ancient times (3000–300 BC), roads, canals, and bridges were very important to warriors.

In Roman times (300 BC-300 AD), structures started to become larger and foundations could no longer be ignored. The Middle Ages (AD 300-1400) were mainly a period of war, in which structures became even heavier, including castles and cathedrals with very thick walls. Severe settlements and instabilities were experienced. The Renaissance (AD 1400-1650) was a period of enormous development in the arts, and several great artists proved to be great engineers as well. This was the case of Leonardo da Vinci and more particularly Michelangelo. Modern times (AD 1650-1900) saw significant engineering development, with a shift from military engineering to civil engineering. In 1776, Charles Coulomb developed his earth pressure theory, followed in 1855 by Henry Darcy and his seepage law. In 1857, William Rankine proposed his own earth pressure theory, closely followed by Carl Culman and his graphical earth pressure solution. In 1882, Otto Mohr presented his stress theory and the famous Mohr circle, and in 1885 Joseph Boussinesq provided the solution to an important elasticity problem for soils. From 1900 to 2000 was the true period of development of modern geotechnical engineering, with the publication of Karl Terzaghi's book *Erdbaumechanik* (in 1925), which was soon translated into English; new editions were co-authored with Ralph Peck, beginning in 1948. The progress over the past 50 years has been stunning, with advances in the understanding of fundamental soil behavior and associated soil models (e.g., unsaturated soils), numerical simulations made possible by the computer revolution, the development of large machines (e.g., drill rigs for bored piles), and a number of ingenious ideas (e.g., reinforced earth walls, pile driving analyzer, geosynthetics).

Geotechnical engineering has transcended the ages because all structures built on or in a planet have to rest on a soil or rock surface; as a result, the geotechnical engineer is here to stay and will continue to be a very important part of humanity's evolution. The Tower of Pisa is one of the most famous examples of a project that did not go as planned, mostly because of the limited knowledge extant some 900 years ago. Today designing a proper foundation for the Tower of Pisa is a very simple exercise, because of our progress. One cannot help but project another 900 years ahead and wonder what progress will have been made. Will we have:

- complete nonintrusive site investigation of the entire soil volume?
- automated four-dimensional (4D) computer-generated design by voice recognition and based on a target risk?
- tiny and easily installed instruments to monitor geotechnical structures?
- unmanned robotic machines working at great depth?

- significant development of the underground?
- extension of projects into the sea?
- soil structure interaction extended to thermal and magnetic engineering?
- failures down to a minimum?
- expert systems to optimize repair of defective geotechnical engineering projects?
- geospace engineering of other planets?
- geotechnical engineers with advanced engineering judgment taught in universities?
- no more lawyers, because of the drastic increase in project reliability?

1.4 GEOTECHNICAL ENGINEERING CAN BE FUN

Geotechnical engineering can be fun and entertaining, as the book by Elton (1999) on geo-magic demonstrates. Such phenomena as the magic sand (watch this video: https://www .stevespanglerscience.com/lab/experiments/magic-hydro phobic-sand/), water going uphill, the surprisingly strong sand pile (Figure 1.3e), the swelling clay pie (Figure 1.3d), and the suddenly very stiff glove full of sand will puzzle the uninitiated. Geotechnical engineering is seldom boring; indeed: the complexity of soil deposits and soil behavior can always surprise us with unanticipated results. The best geotechnical engineering work will always include considerations regarding geology, proper site characterization, sound fundamental soil mechanics principles, advanced knowledge of all the tools available, keen observation, and engineering



Figure 1.3 Soil magic. (Source: Courtesy of David J. Elton.)

judgment. The fact that geotechnical engineering is so complex makes this field an unending discovery process, which keeps the interest of its adepts over their lifetimes.

1.5 UNITS

In engineering, a number without units is usually worthless and often dangerous. On this planet, the unit system most commonly used in geotechnical engineering is the System International or SI system. In the SI system, the unit of mass is the kilogram (kg), which is defined as the mass of a platinum-iridium international prototype kept at the International Bureau of Weights and Measures in Paris, France. On Earth, the kilogram-mass weighs about the same as 10 small apples. The unit of length is the *meter*, defined as the length of the path traveled by light in a vacuum during a time interval of 1/299,792,458 of a second. A meter is about the length of a big step for an average human. The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom. Watches and clocks often have a hand ticking off the seconds. The unit of temperature is the Kelvin, defined as 1/273.16 of the difference in temperature between the absolute zero and the triple point of water. The degree Celsius (C) is also commonly used; it has the same magnitude as the degree Kelvin but starts at $\sim 0^{\circ}$ C (~ 273 K) for the freezing point of water and uses ~100°C (~373 K) for the boiling point of water. There are seven fundamental units in a unit system, but these four (kg, m, s, K) are the most commonly used in geotechnical engineering. The other

Problems and Solutions

Problem 1.1

How would you decide if you have reached the threshold of optimum simplicity?

Solution 1.1

The threshold is not reached if:

- The solution seems too simple or too complicated.
- The solution is not used in practice.
- It costs too much time and money to obtain the solution.
- The solution leads to erroneous answers.
- The solution does not contain or address the essential elements of the problem.

The threshold is likely reached if:

- The solution seems reasonably simple and cannot be simplified further.
- The solution is used in practice.
- The cost of obtaining and implementing the solution is consistent with the budget of a large number of projects.
- The solution leads to reasonable answers.
- The solution is based on fundamental elements of the problem.

fundamental units in the SI system are the mole (substance), the candela (light), and the ampere (electricity).

Other geotechnical engineering units are derived from these fundamental units. The unit of force is the *Newton*, which is the force required to accelerate a mass of 1 kg to 1 m/s^2 .

$$1 \text{ N} = 1 \text{ kg} \times 1 \text{ m/s}^2$$
 (1.1)

This force is about the weight of a small apple. Humans typically weigh between 600 and 1000 N. Most often the kilo-Newton (kN) is used rather than the Newton. The kilogram force is the weight of one kilogram mass. On Earth, the equation is:

$$1 \text{ kgf} = 1 \text{ kg} \times 9.81 \text{ m/s}^2$$
 (1.2)

The unit of stress is the kN/m^2 , also called the kilo-Pascal (kPa); there is about 20 kPa under your feet when you stand on both feet. Note that a kilogram force is the weight of a kilogram mass and depends on what planet you are on and even where you are on Earth.

Accepted multiples of units, also called SI prefixes, are:

4	10 ¹²
terra	
giga	10 ⁹
mega	106
kilo	10 ³
milli	10 ⁻³
micro	10-6
nano	10-9
pico	10-12
(An angstrom is 10^{-10} meter.)	
(An angstrom is 10 ⁻¹⁰ meter.)	